LAWS IN BOOLEAN ALGEBRA
Commutative Law
a.
A+B=B+A
A
|
B
|
A+B
|
B+A
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
b.
A∙B=B∙A
A
|
B
|
A.B
|
B.A
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0 |
1
|
0
|
0
|
0 |
1
|
1
|
1
|
1
|
Distributed Law
a. A∙(B+C)=(A∙B)+(A∙C)
A
|
B
|
C
|
B+C
|
A∙(B+C)
|
A∙B
|
A∙C
|
(A∙B)+(A∙C)
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
b. A+(B∙C)=(A+B)∙(A+C)
A
|
B
|
C
|
B∙C
|
A+(B∙C)
|
A+B
|
A+C
|
(A+B)∙(A+C)
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
Associative Law
a. A+(B+C)=(A+B)+C
A
|
B
|
C
|
B+C
|
A+(B+C)
|
A+B
|
(A+B)+C
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
b. A∙(B∙C)=(A∙B)∙C
A
|
B
|
C
|
B∙C
|
A∙(B∙C)
|
A∙B
|
(A∙B)∙C
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
. DEMORGAN'S THEOREM:
In demorgan’s theorem there are two types. They are:-
1. (A ∙ B)' = A' + B'
A
|
B
|
A∙B
|
|
)' A`
|
B`
|
A`+B`
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
2. (A+B)' = A' ∙ B'
A
|
B
|
A+B
|
|
A`
|
B`
|
A`∙B`
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
NEXT TOPIC: BOOLEAN FUNCTIONS