CANONICAL OR STANDARD FORM

CANONICAL  AND  STANDARD  FORMS

  These are the special cases for SOP and POS forms. They are :

        a.       Standard SOP form.
        b.      Standard POS form.

STANDARD SOP FORM :-

        1. If each term of SOP form consists of all the literals then the SOP form is known as                 Standard or Canonical SOP form.

        2. Each individual term in standard SOP form is known as “minterm”.

        3.Therefore, the canonical SOP form is also known as “minterm canonical form”.

                For Example :-
                                         F(P,Q,R)=PQR+P`QR`+PQR`.

STANDARD  POS  FORM:-

      1. If each term in the POS form contains all the literals then the POS form is known as               Standard or Canonical POS form.

      2. Each individual term is standard POS form is known as “maxterm”.

      3.Therefore, the standard POS formis also known as maxterm canonical form’ [or]               standard form”.

               For Example:-
                                        F(P,Q,R)=(P+Q+R)(P`+Q+R`)(P+Q+R`).


·         Converting expression in standard SOP :

      1. SOP form can be converted into standard SOP by ANDing the term expression by Oring        the variable in complement and uncompliment form.

      2. For example, if there are three literals in Boolean function for eg A,B,C and the term is           AB.
      3. Here the missing variable is C. Therefore, we have to AND the variable C by ORing                (C+C`)  to term Ab+AB(C+C`).

Steps to convert SOP to Standard SOP form :

           1. Find the missing literal in each product term and we have to ANDing the literal by                 ORing the missing literal.

           2.Expand the terms by applying distributive law and reorder the literals in the product                term.

           3. Reduce the expression by omitting the repeated  product terms.

     For Example :-
                              Convert the given expression to standard SOP form.

                   a.       F(A,B,C)=AB+BC+AC
                                                   = AB(C+C`)+BC(A+A`)+AC(B+B`)
                                                   =ABC+ABC`+BCA+BCA`+ACB+ACB`
                                                   =ABC+ABC`+ABC+A`BC+ABC+AB`C
                                                   =ABC+ABC`+A`BC+A`BC+AB`C.

                   b.      F(A,B,C)=A+ABC
                                                  =A(B+B`)(C+C`)+ABC
                                                  =(AB+AB`)(C+C`)+ABC
                                                  =ABC+ABC`+ABC+AB`C+AB`C`
                                                  =ABC+ABC`+AB`C+AB`C`.

                   c.       F(P,Q,R)=PQ+PR+QR
                                                   =PQ(R+R`)+PR(Q+Q`)+QR(P+P`)
                                                   =PQR+PQR`+PRQ+PRQ`+QRP+QRP`
                                                   =PQR+PQR`+PQR+PQ`R+PQR+P`QR
                                                   =PQR+PQR`+PQ`R+P`QR.

Steps to convert POS to Standard POS form :

      1. Finding the missing literal in each sum term.

      2. Now, we have to OR the missing term by ANDing the literal in normal form and                      compliment form.

      3. Expand the expression by applying distributive law and reorder the literals in sum term.
      
      4. Reduce the expression by omitting the repeated sum terms.

 For Example:-
                         Convert POS form TO Standard POS form

                    a.       F(A,B,C)=(A+B)(B+C)(A+C)
                                    = [A+B+(C∙C`)][B+C+(A∙A`)][A+C+(B∙B`)]
                                    = (A+B+C)(A+B+C`)(B+C+A)(B+C+A`)(A+C+B)(A+C+B`)
                                    = (A+B+C)(A+B+C`)(A+B+C)(A`+B+C)(A+B+C)(A+B`+C)
                                    = (A+B+C)(A+B+C`)(A`+B+C)(A+B`+C).

                    b.      F(A,B,C)=A+AB+BC
                                   = A∙(B+B`)(C+C`)+AB∙(C+C`)+BC∙(A+A`)
                                   = (AB+AB`)(C+C`)+ABC+ABC`+BCA+BCA`
                                   = ABC+ABC`+AB`C+AB`C`+A`BC.

                    c.       F(P,Q,R)=PQ+R+PR
                                    = PQ(R+R`)+R(P+P`)(Q+Q`)+PR(Q+Q`)
                                    = PQR+PQR`+PQR+PQR`+P`QR+P`Q`R+PQR+PQ`R
                                    = PQR+PQR`+P`QR+P`Q`R+PQ`R.

              d.       F(X,Y,Z)=(XY+Z)(XZ+Y)
                                   = XY∙XZ+XY∙Y+Z∙XZ+Z∙Y
                                   = XYZ+XY+XZ+YZ
                                   = XYZ+XY(Z+Z`)+XZ(Y+Y`)+YZ(X+X`)
                                   = XYZ+XYZ+XYZ`+XYZ+XY`Z+XYZ+X`YZ

                                   = XYZ+XYZ`+XY`Z+X`YZ.

NEXT TOPIC: ADDERS