BOOLEAN ALGEBRA

      
INTRODUCTION

     1.      In  1854, George Boole has introduced a systematic treatment of logic which is known           as ‘Boolean Algebra’.
      
     2.      In Boolean Algebra 1+1=1 whereas in binary number system 1+1=10.
    
     3.    The Boolean Algebra is defined with a set of elements set of operations and number of rules, laws, theorems and postulates.

     4.      The posulates is a mathematical systems from which we can deduce laws, rules and theorems.
  
     5.      In Boolean Algebra there are two types of operators they are :    
                   +   and  . (dot)

      
       AXIOMS OF BOOLEAN ALGEBRA

       A.      Closure with respect to the operator  ‘+’  i.e. when the vinary elements are operated by          + the result is unique binary element.

       B.      Closure with respect to operator  ‘∙’  i.e. when the binary elements are operated by  ‘ ∙’            operator then the result is unique binary element.

       C.      An identity element with respect to  ‘+’ desiginated  by  0.

        Example:-     A+0=A
                             0+A=A.

       D.      An identity element with respect to  ‘∙’ desiginated by  1.

        Example:-    A*1=A
                            1*A=A.

       E.    Commutative withrespect to ‘+’ i.e. A+B=B+A.

       F.    Commutative with respect to ‘∙’ i.e. AB=BA.

      G.     Distributed property of ‘∙’ over ‘+’ is A∙(B+C)=(A∙B)+(A∙C).

      H.      Distributed property of ‘+’ over ‘∙’ is A+(B∙C)=(A+B)∙(A+C).

       I.       For every binary element there exists a complement i.e. 
                                        if A=0, then A`=1
                                   if  A=1, then A`=0.

 J.   There exists atleast two elements like A & B  in the set such that A!=B.